Skip to content
Go back

Mastering Qwen AI Image Editor Performance Optimization with Chrome DevTools and Advanced Techniques

Edit page

Mastering Qwen AI Image Editor Performance Optimization with Chrome DevTools and Advanced Techniques

Unlock the full potential of Qwen AI Image Editor through comprehensive performance optimization strategies using Chrome DevTools, monitoring frameworks, and advanced debugging methodologies.

Welcome to the definitive guide for developers and performance engineers looking to optimize Qwen AI Image Editor implementations. Building upon our previous articles covering quick start, advanced techniques, API integration, and enterprise deployment, this guide focuses specifically on performance optimization, debugging, and monitoring strategies that ensure your AI image editing workflows run at peak efficiency.

Why Performance Optimization Matters

In today’s fast-paced digital environment, users expect instant results. When integrating AI image editing capabilities into your applications, performance directly impacts user satisfaction, conversion rates, and operational costs.

Key Performance Indicators to Monitor:

This guide provides hands-on techniques for identifying, diagnosing, and resolving performance bottlenecks in your Qwen AI Image Editor implementations.


Chrome DevTools: Your Performance Analysis Arsenal

Chrome DevTools offers powerful capabilities for analyzing and optimizing web-based AI image editing applications. Let’s explore how to leverage these tools specifically for Qwen AI Image Editor implementations.

Performance Tab Analysis

Master the Performance tab to identify bottlenecks in your image editing workflows:

// Performance monitoring script for your Qwen AI integration
class QwenPerformanceMonitor {
    constructor() {
        this.metrics = {
            uploadTime: [],
            processingTime: [],
            downloadTime: [],
            totalMemoryUsage: [],
            apiLatency: []
        };
        this.activeRequests = new Set();
    }

    // Monitor API request performance
    async trackAPICall(endpoint, data) {
        const startTime = performance.now();
        const request_id = Math.random().toString(36).substr(2, 9);
        this.activeRequests.add(request_id);

        try {
            const response = await fetch(endpoint, {
                method: 'POST',
                headers: {
                    'Content-Type': 'application/json',
                    'Authorization': `Bearer ${this.getApiKey()}`
                },
                body: JSON.stringify(data)
            });

            const endTime = performance.now();
            const duration = endTime - startTime;

            this.metrics.apiLatency.push({
                endpoint,
                duration,
                timestamp: Date.now(),
                success: response.ok
            });

            this.activeRequests.delete(request_id);
            return response;
        } catch (error) {
            const endTime = performance.now();
            this.metrics.apiLatency.push({
                endpoint,
                duration: endTime - startTime,
                timestamp: Date.now(),
                success: false,
                error: error.message
            });
            this.activeRequests.delete(request_id);
            throw error;
        }
    }

    // Memory usage monitoring
    getMemoryUsage() {
        if (performance.memory) {
            return {
                usedJSHeapSize: performance.memory.usedJSHeapSize,
                totalJSHeapSize: performance.memory.totalJSHeapSize,
                jsHeapSizeLimit: performance.memory.jsHeapSizeLimit
            };
        }
        return null;
    }

    // Generate performance report
    generatePerformanceReport() {
        const avgApiLatency = this.metrics.apiLatency.reduce((sum, metric) =>
            sum + metric.duration, 0) / this.metrics.apiLatency.length;

        const successRate = (this.metrics.apiLatency.filter(m => m.success).length /
            this.metrics.apiLatency.length) * 100;

        return {
            averageApiLatency: avgApiLatency.toFixed(2),
            totalRequests: this.metrics.apiLatency.length,
            successRate: successRate.toFixed(2),
            memoryUsage: this.getMemoryUsage(),
            activeConnections: this.activeRequests.size,
            timestamp: new Date().toISOString()
        };
    }
}

// Usage example
const performanceMonitor = new QwenPerformanceMonitor();

// Track an image editing request
performanceMonitor.trackAPICall('https://api.qwen.ai/v1/images/edit', {
    image_id: 'img_123',
    prompt: 'Convert to cyberpunk style',
    num_inference_steps: 50,
    guidance_scale: 7.5
});

Network Tab Optimization

Use the Network tab to analyze and optimize API calls:

// Network optimization utilities
class QwenNetworkOptimizer {
    constructor(apiKey) {
        this.apiKey = apiKey;
        this.cache = new Map();
        this.requestQueue = [];
        this.isProcessing = false;
    }

    // Implement request caching
    async cachedRequest(url, options) {
        const cacheKey = this.generateCacheKey(url, options);

        // Check cache first
        if (this.cache.has(cacheKey)) {
            const cached = this.cache.get(cacheKey);
            if (Date.now() - cached.timestamp < 300000) { // 5 minutes cache
                return cached.data;
            }
        }

        // Make new request
        const response = await fetch(url, options);
        const data = await response.json();

        // Cache the result
        this.cache.set(cacheKey, {
            data,
            timestamp: Date.now()
        });

        return data;
    }

    // Implement request batching
    async batchRequests(requests) {
        this.requestQueue.push(...requests);

        if (!this.isProcessing) {
            this.isProcessing = true;
            await this.processQueue();
            this.isProcessing = false;
        }
    }

    async processQueue() {
        while (this.requestQueue.length > 0) {
            const batch = this.requestQueue.splice(0, 5); // Process 5 requests at once
            await Promise.all(batch.map(request => this.executeRequest(request)));

            // Add delay between batches to avoid rate limiting
            await new Promise(resolve => setTimeout(resolve, 1000));
        }
    }

    async executeRequest(request) {
        try {
            const response = await fetch(request.url, request.options);
            return await response.json();
        } catch (error) {
            console.error('Request failed:', error);
            throw error;
        }
    }

    generateCacheKey(url, options) {
        return `${url}_${JSON.stringify(options)}`;
    }
}

// WebSocket connection for real-time updates
class QwenWebSocketClient {
    constructor(endpoint) {
        this.endpoint = endpoint;
        this.ws = null;
        this.reconnectAttempts = 0;
        this.maxReconnectAttempts = 5;
        this.eventListeners = new Map();
    }

    connect() {
        try {
            this.ws = new WebSocket(this.endpoint);

            this.ws.onopen = () => {
                console.log('WebSocket connected');
                this.reconnectAttempts = 0;
                this.emit('connected');
            };

            this.ws.onmessage = (event) => {
                const data = JSON.parse(event.data);
                this.emit('message', data);
            };

            this.ws.onclose = () => {
                console.log('WebSocket disconnected');
                this.emit('disconnected');
                this.reconnect();
            };

            this.ws.onerror = (error) => {
                console.error('WebSocket error:', error);
                this.emit('error', error);
            };
        } catch (error) {
            console.error('WebSocket connection failed:', error);
            this.reconnect();
        }
    }

    reconnect() {
        if (this.reconnectAttempts < this.maxReconnectAttempts) {
            this.reconnectAttempts++;
            const delay = Math.pow(2, this.reconnectAttempts) * 1000;

            setTimeout(() => {
                console.log(`Attempting to reconnect (${this.reconnectAttempts}/${this.maxReconnectAttempts})`);
                this.connect();
            }, delay);
        } else {
            console.error('Max reconnection attempts reached');
        }
    }

    on(event, callback) {
        if (!this.eventListeners.has(event)) {
            this.eventListeners.set(event, []);
        }
        this.eventListeners.get(event).push(callback);
    }

    emit(event, data) {
        if (this.eventListeners.has(event)) {
            this.eventListeners.get(event).forEach(callback => callback(data));
        }
    }

    send(data) {
        if (this.ws && this.ws.readyState === WebSocket.OPEN) {
            this.ws.send(JSON.stringify(data));
        } else {
            console.error('WebSocket is not connected');
        }
    }
}

Memory Tab Analysis

Monitor and optimize memory usage for large image processing:

// Memory optimization utilities
class QwenMemoryOptimizer {
    constructor() {
        this.imageCache = new Map();
        this.maxCacheSize = 100 * 1024 * 1024; // 100MB
        this.currentCacheSize = 0;
    }

    // Optimize image memory usage
    optimizeImageMemory(imageElement, maxSizeKB = 500) {
        return new Promise((resolve) => {
            const canvas = document.createElement('canvas');
            const ctx = canvas.getContext('2d');

            // Calculate new dimensions
            let width = imageElement.naturalWidth;
            let height = imageElement.naturalHeight;
            const maxSizeBytes = maxSizeKB * 1024;

            // Start with original dimensions
            canvas.width = width;
            canvas.height = height;

            // Draw image and check size
            ctx.drawImage(imageElement, 0, 0, width, height);

            canvas.toBlob((blob) => {
                if (blob.size > maxSizeBytes) {
                    // Calculate scale factor
                    const scaleFactor = Math.sqrt(maxSizeBytes / blob.size);
                    width = Math.floor(width * scaleFactor);
                    height = Math.floor(height * scaleFactor);

                    // Resize and redraw
                    canvas.width = width;
                    canvas.height = height;
                    ctx.drawImage(imageElement, 0, 0, width, height);

                    canvas.toBlob((optimizedBlob) => {
                        resolve(optimizedBlob);
                    }, 'image/jpeg', 0.8);
                } else {
                    resolve(blob);
                }
            }, 'image/jpeg', 0.8);
        });
    }

    // Implement intelligent caching
    addToCache(key, imageData, priority = 'normal') {
        const size = this.getImageSize(imageData);

        // Clear cache if needed
        while (this.currentCacheSize + size > this.maxCacheSize) {
            this.evictFromCache();
        }

        this.imageCache.set(key, {
            data: imageData,
            size: size,
            priority: priority,
            lastAccessed: Date.now()
        });

        this.currentCacheSize += size;
    }

    evictFromCache() {
        let oldestKey = null;
        let oldestTime = Date.now();

        for (const [key, item] of this.imageCache.entries()) {
            if (item.lastAccessed < oldestTime) {
                oldestTime = item.lastAccessed;
                oldestKey = key;
            }
        }

        if (oldestKey) {
            const item = this.imageCache.get(oldestKey);
            this.imageCache.delete(oldestKey);
            this.currentCacheSize -= item.size;
        }
    }

    getImageSize(imageData) {
        if (imageData instanceof Blob) {
            return imageData.size;
        } else if (typeof imageData === 'string') {
            return new Blob([imageData]).size;
        }
        return 0;
    }

    // Memory cleanup
    performCleanup() {
        // Clear old cache entries
        const now = Date.now();
        const maxAge = 30 * 60 * 1000; // 30 minutes

        for (const [key, item] of this.imageCache.entries()) {
            if (now - item.lastAccessed > maxAge) {
                this.imageCache.delete(key);
                this.currentCacheSize -= item.size;
            }
        }

        // Force garbage collection if available
        if (window.gc) {
            window.gc();
        }
    }
}

// Usage example
const memoryOptimizer = new QwenMemoryOptimizer();

// Optimize uploaded image
const imageInput = document.getElementById('image-input');
imageInput.addEventListener('change', async (event) => {
    const file = event.target.files[0];
    const img = new Image();

    img.onload = async () => {
        const optimizedBlob = await memoryOptimizer.optimizeImageMemory(img);

        // Add to cache
        memoryOptimizer.addToCache(`image_${Date.now()}`, optimizedBlob);

        // Continue with processing...
    };

    img.src = URL.createObjectURL(file);
});

Advanced Performance Monitoring and Analytics

Go beyond basic monitoring with comprehensive performance analytics.

Real-time Performance Dashboard

Create a comprehensive monitoring dashboard:

// Performance dashboard implementation
class QwenPerformanceDashboard {
    constructor(containerId) {
        this.container = document.getElementById(containerId);
        this.metrics = {
            responseTime: [],
            memoryUsage: [],
            errorRate: [],
            throughput: []
        };
        this.initializeDashboard();
    }

    initializeDashboard() {
        this.container.innerHTML = `
            <div class="performance-dashboard">
                <div class="metrics-grid">
                    <div class="metric-card">
                        <h3>Average Response Time</h3>
                        <div class="metric-value" id="avg-response-time">0ms</div>
                        <div class="metric-trend" id="response-trend">→</div>
                    </div>
                    <div class="metric-card">
                        <h3>Memory Usage</h3>
                        <div class="metric-value" id="memory-usage">0MB</div>
                        <div class="metric-trend" id="memory-trend">→</div>
                    </div>
                    <div class="metric-card">
                        <h3>Error Rate</h3>
                        <div class="metric-value" id="error-rate">0%</div>
                        <div class="metric-trend" id="error-trend">→</div>
                    </div>
                    <div class="metric-card">
                        <h3>Throughput</h3>
                        <div class="metric-value" id="throughput">0/min</div>
                        <div class="metric-trend" id="throughput-trend">→</div>
                    </div>
                </div>

                <div class="charts-container">
                    <div class="chart-wrapper">
                        <canvas id="response-time-chart"></canvas>
                    </div>
                    <div class="chart-wrapper">
                        <canvas id="memory-usage-chart"></canvas>
                    </div>
                </div>

                <div class="alerts-container">
                    <h3>Performance Alerts</h3>
                    <div id="alerts-list"></div>
                </div>
            </div>
        `;

        this.initializeCharts();
        this.startMonitoring();
    }

    initializeCharts() {
        // Response time chart
        const responseTimeCtx = document.getElementById('response-time-chart').getContext('2d');
        this.responseTimeChart = new Chart(responseTimeCtx, {
            type: 'line',
            data: {
                labels: [],
                datasets: [{
                    label: 'Response Time (ms)',
                    data: [],
                    borderColor: 'rgb(75, 192, 192)',
                    backgroundColor: 'rgba(75, 192, 192, 0.2)',
                    tension: 0.1
                }]
            },
            options: {
                responsive: true,
                scales: {
                    y: {
                        beginAtZero: true
                    }
                }
            }
        });

        // Memory usage chart
        const memoryUsageCtx = document.getElementById('memory-usage-chart').getContext('2d');
        this.memoryUsageChart = new Chart(memoryUsageCtx, {
            type: 'line',
            data: {
                labels: [],
                datasets: [{
                    label: 'Memory Usage (MB)',
                    data: [],
                    borderColor: 'rgb(255, 99, 132)',
                    backgroundColor: 'rgba(255, 99, 132, 0.2)',
                    tension: 0.1
                }]
            },
            options: {
                responsive: true,
                scales: {
                    y: {
                        beginAtZero: true
                    }
                }
            }
        });
    }

    startMonitoring() {
        setInterval(() => {
            this.updateMetrics();
            this.updateCharts();
            this.checkAlerts();
        }, 5000); // Update every 5 seconds
    }

    updateMetrics() {
        // Collect current metrics
        const currentMetrics = this.collectMetrics();

        // Update metrics arrays
        this.metrics.responseTime.push(currentMetrics.responseTime);
        this.metrics.memoryUsage.push(currentMetrics.memoryUsage);
        this.metrics.errorRate.push(currentMetrics.errorRate);
        this.metrics.throughput.push(currentMetrics.throughput);

        // Keep only last 50 data points
        if (this.metrics.responseTime.length > 50) {
            this.metrics.responseTime.shift();
            this.metrics.memoryUsage.shift();
            this.metrics.errorRate.shift();
            this.metrics.throughput.shift();
        }

        // Update UI
        this.updateMetricCards(currentMetrics);
    }

    collectMetrics() {
        return {
            responseTime: this.calculateAverageResponseTime(),
            memoryUsage: this.getCurrentMemoryUsage(),
            errorRate: this.calculateErrorRate(),
            throughput: this.calculateThroughput(),
            timestamp: Date.now()
        };
    }

    calculateAverageResponseTime() {
        // Implementation depends on your API tracking
        // This is a placeholder implementation
        return Math.random() * 1000 + 200; // 200-1200ms
    }

    getCurrentMemoryUsage() {
        if (performance.memory) {
            return performance.memory.usedJSHeapSize / (1024 * 1024); // Convert to MB
        }
        return Math.random() * 100 + 50; // 50-150MB placeholder
    }

    calculateErrorRate() {
        // Implementation depends on your error tracking
        return Math.random() * 5; // 0-5% placeholder
    }

    calculateThroughput() {
        // Implementation depends on your request tracking
        return Math.random() * 50 + 10; // 10-60 requests/minute
    }

    updateMetricCards(metrics) {
        document.getElementById('avg-response-time').textContent =
            `${metrics.responseTime.toFixed(0)}ms`;
        document.getElementById('memory-usage').textContent =
            `${metrics.memoryUsage.toFixed(1)}MB`;
        document.getElementById('error-rate').textContent =
            `${metrics.errorRate.toFixed(2)}%`;
        document.getElementById('throughput').textContent =
            `${metrics.throughput.toFixed(0)}/min`;
    }

    updateCharts() {
        const now = new Date().toLocaleTimeString();

        // Update response time chart
        this.responseTimeChart.data.labels.push(now);
        this.responseTimeChart.data.datasets[0].data.push(
            this.metrics.responseTime[this.metrics.responseTime.length - 1]
        );
        this.responseTimeChart.update('none');

        // Update memory usage chart
        this.memoryUsageChart.data.labels.push(now);
        this.memoryUsageChart.data.datasets[0].data.push(
            this.metrics.memoryUsage[this.metrics.memoryUsage.length - 1]
        );
        this.memoryUsageChart.update('none');
    }

    checkAlerts() {
        const alerts = [];

        // Check for performance issues
        const avgResponseTime = this.calculateAverageResponseTime();
        if (avgResponseTime > 1000) {
            alerts.push({
                type: 'warning',
                message: `High response time: ${avgResponseTime.toFixed(0)}ms`,
                timestamp: Date.now()
            });
        }

        const memoryUsage = this.getCurrentMemoryUsage();
        if (memoryUsage > 500) {
            alerts.push({
                type: 'error',
                message: `High memory usage: ${memoryUsage.toFixed(1)}MB`,
                timestamp: Date.now()
            });
        }

        const errorRate = this.calculateErrorRate();
        if (errorRate > 2) {
            alerts.push({
                type: 'error',
                message: `High error rate: ${errorRate.toFixed(2)}%`,
                timestamp: Date.now()
            });
        }

        this.updateAlertsList(alerts);
    }

    updateAlertsList(alerts) {
        const alertsList = document.getElementById('alerts-list');
        alertsList.innerHTML = alerts.map(alert => `
            <div class="alert alert-${alert.type}">
                <span class="alert-time">${new Date(alert.timestamp).toLocaleTimeString()}</span>
                <span class="alert-message">${alert.message}</span>
            </div>
        `).join('');
    }
}

// CSS for dashboard styling
const dashboardStyles = `
.performance-dashboard {
    font-family: Arial, sans-serif;
    padding: 20px;
    background: #f5f5f5;
    border-radius: 8px;
}

.metrics-grid {
    display: grid;
    grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
    gap: 20px;
    margin-bottom: 30px;
}

.metric-card {
    background: white;
    padding: 20px;
    border-radius: 8px;
    box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}

.metric-card h3 {
    margin: 0 0 10px 0;
    color: #666;
    font-size: 14px;
    font-weight: normal;
}

.metric-value {
    font-size: 24px;
    font-weight: bold;
    color: #333;
    margin-bottom: 5px;
}

.metric-trend {
    font-size: 12px;
    color: #666;
}

.charts-container {
    display: grid;
    grid-template-columns: 1fr 1fr;
    gap: 20px;
    margin-bottom: 30px;
}

.chart-wrapper {
    background: white;
    padding: 20px;
    border-radius: 8px;
    box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}

.alerts-container {
    background: white;
    padding: 20px;
    border-radius: 8px;
    box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}

.alerts-container h3 {
    margin: 0 0 15px 0;
    color: #333;
}

.alert {
    padding: 10px;
    margin-bottom: 10px;
    border-radius: 4px;
    border-left: 4px solid;
}

.alert-warning {
    background: #fff3cd;
    border-color: #ffc107;
    color: #856404;
}

.alert-error {
    background: #f8d7da;
    border-color: #dc3545;
    color: #721c24;
}

.alert-time {
    font-size: 12px;
    color: #666;
    margin-right: 10px;
}

.alert-message {
    font-size: 14px;
}
`;

// Add styles to document
const styleSheet = document.createElement('style');
styleSheet.textContent = dashboardStyles;
document.head.appendChild(styleSheet);

// Usage example
// const dashboard = new QwenPerformanceDashboard('dashboard-container');

Performance Analytics and Reporting

Generate comprehensive performance reports:

// Performance analytics engine
class QwenPerformanceAnalytics {
    constructor() {
        this.sessionData = [];
        this.currentSession = null;
        this.baselineMetrics = null;
    }

    // Start performance session
    startSession(sessionConfig = {}) {
        this.currentSession = {
            id: this.generateSessionId(),
            startTime: Date.now(),
            config: sessionConfig,
            metrics: {
                requests: [],
                memorySnapshots: [],
                performanceMarks: [],
                errors: []
            }
        };

        this.sessionData.push(this.currentSession);
        return this.currentSession.id;
    }

    // End performance session
    endSession(sessionId) {
        const session = this.sessionData.find(s => s.id === sessionId);
        if (session) {
            session.endTime = Date.now();
            session.duration = session.endTime - session.startTime;
            return this.generateSessionReport(session);
        }
        return null;
    }

    // Track API request
    trackRequest(sessionId, request) {
        const session = this.sessionData.find(s => s.id === sessionId);
        if (session) {
            session.metrics.requests.push({
                ...request,
                timestamp: Date.now()
            });
        }
    }

    // Track memory snapshot
    trackMemorySnapshot(sessionId) {
        const session = this.sessionData.find(s => s.id === sessionId);
        if (session && performance.memory) {
            session.metrics.memorySnapshots.push({
                used: performance.memory.usedJSHeapSize,
                total: performance.memory.totalJSHeapSize,
                limit: performance.memory.jsHeapSizeLimit,
                timestamp: Date.now()
            });
        }
    }

    // Add performance mark
    addPerformanceMark(sessionId, name, detail = {}) {
        const session = this.sessionData.find(s => s.id === sessionId);
        if (session) {
            performance.mark(`${sessionId}_${name}`);
            session.metrics.performanceMarks.push({
                name,
                detail,
                timestamp: Date.now()
            });
        }
    }

    // Track error
    trackError(sessionId, error, context = {}) {
        const session = this.sessionData.find(s => s.id === sessionId);
        if (session) {
            session.metrics.errors.push({
                error: error.message || error,
                stack: error.stack,
                context,
                timestamp: Date.now()
            });
        }
    }

    // Generate session report
    generateSessionReport(session) {
        const report = {
            sessionId: session.id,
            duration: session.duration,
            startTime: new Date(session.startTime).toISOString(),
            endTime: new Date(session.endTime).toISOString(),
            config: session.config,
            summary: this.generateSessionSummary(session),
            metrics: {
                requests: this.analyzeRequests(session.metrics.requests),
                memory: this.analyzeMemoryUsage(session.metrics.memorySnapshots),
                performance: this.analyzePerformanceMarks(session.metrics.performanceMarks),
                errors: this.analyzeErrors(session.metrics.errors)
            },
            recommendations: this.generateRecommendations(session)
        };

        return report;
    }

    generateSessionSummary(session) {
        const requestMetrics = this.analyzeRequests(session.metrics.requests);
        const memoryMetrics = this.analyzeMemoryUsage(session.metrics.memorySnapshots);
        const errorMetrics = this.analyzeErrors(session.metrics.errors);

        return {
            totalRequests: session.metrics.requests.length,
            averageResponseTime: requestMetrics.averageResponseTime,
            successRate: requestMetrics.successRate,
            averageMemoryUsage: memoryMetrics.averageUsage,
            peakMemoryUsage: memoryMetrics.peakUsage,
            errorCount: session.metrics.errors.length,
            errorRate: errorMetrics.errorRate
        };
    }

    analyzeRequests(requests) {
        if (requests.length === 0) {
            return {
                totalRequests: 0,
                averageResponseTime: 0,
                successRate: 100,
                requestsPerSecond: 0
            };
        }

        const successfulRequests = requests.filter(r => r.success);
        const averageResponseTime = requests.reduce((sum, r) => sum + r.duration, 0) / requests.length;
        const successRate = (successfulRequests.length / requests.length) * 100;

        const sessionDuration = (requests[requests.length - 1].timestamp - requests[0].timestamp) / 1000;
        const requestsPerSecond = requests.length / sessionDuration;

        return {
            totalRequests: requests.length,
            averageResponseTime,
            successRate,
            requestsPerSecond
        };
    }

    analyzeMemoryUsage(snapshots) {
        if (snapshots.length === 0) {
            return {
                averageUsage: 0,
                peakUsage: 0,
                memoryGrowthRate: 0
            };
        }

        const usages = snapshots.map(s => s.used);
        const averageUsage = usages.reduce((sum, usage) => sum + usage, 0) / usages.length;
        const peakUsage = Math.max(...usages);

        const memoryGrowthRate = snapshots.length > 1 ?
            (snapshots[snapshots.length - 1].used - snapshots[0].used) /
            (snapshots.length - 1) : 0;

        return {
            averageUsage: averageUsage / (1024 * 1024), // Convert to MB
            peakUsage: peakUsage / (1024 * 1024),
            memoryGrowthRate: memoryGrowthRate / (1024 * 1024)
        };
    }

    analyzePerformanceMarks(marks) {
        if (marks.length === 0) {
            return {
                totalMarks: 0,
                averageTimeBetweenMarks: 0
            };
        }

        const timeBetweenMarks = [];
        for (let i = 1; i < marks.length; i++) {
            timeBetweenMarks.push(marks[i].timestamp - marks[i - 1].timestamp);
        }

        const averageTimeBetweenMarks = timeBetweenMarks.length > 0 ?
            timeBetweenMarks.reduce((sum, time) => sum + time, 0) / timeBetweenMarks.length : 0;

        return {
            totalMarks: marks.length,
            averageTimeBetweenMarks
        };
    }

    analyzeErrors(errors) {
        const totalRequests = errors.reduce((sum, error) => sum + (error.context?.requestCount || 1), 0);
        const errorRate = totalRequests > 0 ? (errors.length / totalRequests) * 100 : 0;

        return {
            totalErrors: errors.length,
            errorRate,
            errorTypes: this.categorizeErrors(errors)
        };
    }

    categorizeErrors(errors) {
        const categories = {};

        errors.forEach(error => {
            const category = this.categorizeError(error);
            categories[category] = (categories[category] || 0) + 1;
        });

        return categories;
    }

    categorizeError(error) {
        const message = error.error.toLowerCase();

        if (message.includes('network')) return 'Network';
        if (message.includes('timeout')) return 'Timeout';
        if (message.includes('memory')) return 'Memory';
        if (message.includes('permission')) return 'Permission';
        return 'Unknown';
    }

    generateRecommendations(session) {
        const recommendations = [];
        const summary = this.generateSessionSummary(session);

        // Performance recommendations
        if (summary.averageResponseTime > 1000) {
            recommendations.push({
                priority: 'high',
                category: 'Performance',
                message: `High average response time (${summary.averageResponseTime.toFixed(0)}ms). Consider optimizing API calls or implementing caching.`,
                action: 'Implement request caching and batch processing'
            });
        }

        // Memory recommendations
        if (summary.peakMemoryUsage > 500) {
            recommendations.push({
                priority: 'high',
                category: 'Memory',
                message: `High peak memory usage (${summary.peakMemoryUsage.toFixed(1)}MB). Consider optimizing image processing workflows.`,
                action: 'Implement memory optimization and image compression'
            });
        }

        // Error rate recommendations
        if (summary.errorRate > 5) {
            recommendations.push({
                priority: 'high',
                category: 'Reliability',
                message: `High error rate (${summary.errorRate.toFixed(2)}%). Implement better error handling and retry logic.`,
                action: 'Add exponential backoff retry mechanism'
            });
        }

        // Success rate recommendations
        if (summary.successRate < 95) {
            recommendations.push({
                priority: 'medium',
                category: 'Reliability',
                message: `Low success rate (${summary.successRate.toFixed(2)}%). Review API integration and error handling.`,
                action: 'Improve API error handling and validation'
            });
        }

        return recommendations;
    }

    generateSessionId() {
        return `session_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`;
    }

    // Export report to various formats
    exportReport(report, format = 'json') {
        switch (format.toLowerCase()) {
            case 'json':
                return JSON.stringify(report, null, 2);

            case 'csv':
                return this.exportToCSV(report);

            case 'html':
                return this.exportToHTML(report);

            default:
                throw new Error(`Unsupported export format: ${format}`);
        }
    }

    exportToCSV(report) {
        // Implementation for CSV export
        const rows = [
            ['Metric', 'Value'],
            ['Session ID', report.sessionId],
            ['Duration (ms)', report.duration],
            ['Total Requests', report.summary.totalRequests],
            ['Average Response Time', report.summary.averageResponseTime.toFixed(2)],
            ['Success Rate (%)', report.summary.successRate.toFixed(2)],
            ['Average Memory Usage (MB)', report.summary.averageMemoryUsage.toFixed(2)],
            ['Peak Memory Usage (MB)', report.summary.peakMemoryUsage.toFixed(2)],
            ['Error Count', report.summary.errorCount],
            ['Error Rate (%)', report.summary.errorRate.toFixed(2)]
        ];

        return rows.map(row => row.join(',')).join('\n');
    }

    exportToHTML(report) {
        // Implementation for HTML export
        return `
            <html>
                <head>
                    <title>Performance Report - ${report.sessionId}</title>
                    <style>
                        body { font-family: Arial, sans-serif; margin: 20px; }
                        .header { background: #f5f5f5; padding: 20px; border-radius: 8px; }
                        .metric { margin: 10px 0; }
                        .recommendations { background: #e8f5e8; padding: 15px; border-radius: 8px; margin-top: 20px; }
                        .recommendation { margin: 10px 0; padding: 10px; background: white; border-radius: 4px; }
                        .high { border-left: 4px solid #dc3545; }
                        .medium { border-left: 4px solid #ffc107; }
                        .low { border-left: 4px solid #28a745; }
                    </style>
                </head>
                <body>
                    <div class="header">
                        <h1>Performance Report</h1>
                        <p>Session: ${report.sessionId}</p>
                        <p>Duration: ${report.duration}ms</p>
                        <p>Generated: ${new Date().toISOString()}</p>
                    </div>

                    <div class="metrics">
                        <h2>Performance Metrics</h2>
                        <div class="metric">Total Requests: ${report.summary.totalRequests}</div>
                        <div class="metric">Average Response Time: ${report.summary.averageResponseTime.toFixed(2)}ms</div>
                        <div class="metric">Success Rate: ${report.summary.successRate.toFixed(2)}%</div>
                        <div class="metric">Average Memory Usage: ${report.summary.averageMemoryUsage.toFixed(2)}MB</div>
                        <div class="metric">Peak Memory Usage: ${report.summary.peakMemoryUsage.toFixed(2)}MB</div>
                        <div class="metric">Error Count: ${report.summary.errorCount}</div>
                        <div class="metric">Error Rate: ${report.summary.errorRate.toFixed(2)}%</div>
                    </div>

                    <div class="recommendations">
                        <h2>Recommendations</h2>
                        ${report.recommendations.map(rec => `
                            <div class="recommendation ${rec.priority}">
                                <strong>${rec.category} (${rec.priority} priority)</strong>
                                <p>${rec.message}</p>
                                <p><strong>Action:</strong> ${rec.action}</p>
                            </div>
                        `).join('')}
                    </div>
                </body>
            </html>
        `;
    }
}

// Usage example
const analytics = new QwenPerformanceAnalytics();

// Start performance session
const sessionId = analytics.startSession({
    environment: 'production',
    application: 'Qwen AI Image Editor',
    version: '1.0.0'
});

// Track performance during image processing
async function processImageWithAnalytics(imageId, prompt) {
    analytics.addPerformanceMark(sessionId, 'image_processing_start');

    try {
        // Track the API request
        const startTime = performance.now();
        const response = await fetch('/api/edit-image', {
            method: 'POST',
            headers: {
                'Content-Type': 'application/json',
            },
            body: JSON.stringify({ image_id: imageId, prompt })
        });

        const duration = performance.now() - startTime;

        analytics.trackRequest(sessionId, {
            endpoint: '/api/edit-image',
            method: 'POST',
            duration: duration,
            success: response.ok,
            status: response.status
        });

        if (!response.ok) {
            throw new Error(`HTTP error! status: ${response.status}`);
        }

        const result = await response.json();
        analytics.addPerformanceMark(sessionId, 'image_processing_end');

        return result;
    } catch (error) {
        analytics.trackError(sessionId, error, {
            image_id: imageId,
            prompt: prompt
        });
        throw error;
    }
}

// Generate report at the end
const report = analytics.endSession(sessionId);
console.log('Performance Report:', report);

// Export to different formats
const jsonReport = analytics.exportReport(report, 'json');
const csvReport = analytics.exportReport(report, 'csv');
const htmlReport = analytics.exportReport(report, 'html');

Advanced Debugging Techniques

Master sophisticated debugging strategies for complex AI image editing workflows.

Chrome DevTools Protocol Integration

Integrate Chrome DevTools Protocol for advanced debugging:

// Chrome DevTools Protocol integration
class QwenDevToolsIntegration {
    constructor() {
        this.client = null;
        this.breakpoints = new Map();
        this.networkInterceptors = new Map();
    }

    async connect() {
        try {
            // Connect to Chrome DevTools Protocol
            const response = await fetch('http://localhost:9222/json/version');
            const data = await response.json();

            this.client = new WebSocket(data.webSocketDebuggerUrl);

            this.client.onmessage = (event) => {
                const message = JSON.parse(event.data);
                this.handleMessage(message);
            };

            await this.initializeDevTools();
            console.log('Connected to Chrome DevTools Protocol');
        } catch (error) {
            console.error('Failed to connect to Chrome DevTools Protocol:', error);
        }
    }

    async initializeDevTools() {
        // Enable required domains
        await this.sendCommand('Network.enable');
        await this.sendCommand('Page.enable');
        await this.sendCommand('Runtime.enable');
        await this.sendCommand('Debugger.enable');
        await this.sendCommand('Memory.enable');

        // Set up event listeners
        this.setupEventListeners();
    }

    async sendCommand(method, params = {}) {
        const id = Math.random().toString(36).substr(2, 9);
        const command = {
            id: id,
            method: method,
            params: params
        };

        return new Promise((resolve, reject) => {
            const timeout = setTimeout(() => {
                reject(new Error(`Command ${method} timed out`));
            }, 5000);

            const originalOnMessage = this.client.onmessage;
            this.client.onmessage = (event) => {
                const message = JSON.parse(event.data);

                if (message.id === id) {
                    clearTimeout(timeout);
                    this.client.onmessage = originalOnMessage;

                    if (message.error) {
                        reject(new Error(message.error.message));
                    } else {
                        resolve(message.result);
                    }
                } else {
                    originalOnMessage.call(this.client, event);
                }
            };

            this.client.send(JSON.stringify(command));
        });
    }

    setupEventListeners() {
        // Network events
        this.client.addEventListener('message', (event) => {
            const message = JSON.parse(event.data);

            if (message.method === 'Network.requestWillBeSent') {
                this.handleNetworkRequest(message.params);
            } else if (message.method === 'Network.responseReceived') {
                this.handleNetworkResponse(message.params);
            } else if (message.method === 'Network.loadingFailed') {
                this.handleNetworkError(message.params);
            }
        });

        // Memory events
        this.client.addEventListener('message', (event) => {
            const message = JSON.parse(event.data);

            if (message.method === 'Memory.usageReporting') {
                this.handleMemoryUsage(message.params);
            }
        });
    }

    handleMessage(message) {
        // Handle various DevTools Protocol messages
        if (message.method === 'Console.messageAdded') {
            this.handleConsoleMessage(message.params.message);
        } else if (message.method === 'Runtime.exceptionThrown') {
            this.handleRuntimeException(message.params.exceptionDetails);
        }
    }

    handleNetworkRequest(params) {
        const request = params.request;

        // Track Qwen AI API requests
        if (request.url.includes('qwen.ai')) {
            console.log('Qwen API Request:', {
                url: request.url,
                method: request.method,
                timestamp: params.timestamp,
                requestId: params.requestId
            });

            this.networkInterceptors.set(params.requestId, {
                request: request,
                timestamp: params.timestamp
            });
        }
    }

    handleNetworkResponse(params) {
        const response = params.response;
        const interceptor = this.networkInterceptors.get(params.requestId);

        if (interceptor) {
            const duration = params.timestamp - interceptor.timestamp;

            console.log('Qwen API Response:', {
                url: response.url,
                status: response.status,
                duration: duration,
                size: response.encodedDataLength
            });

            // Analyze response for performance insights
            this.analyzeAPIResponse(response, duration);
        }
    }

    handleNetworkError(params) {
        const interceptor = this.networkInterceptors.get(params.requestId);

        if (interceptor) {
            console.error('Qwen API Network Error:', {
                url: interceptor.request.url,
                error: params.errorText,
                timestamp: params.timestamp
            });
        }
    }

    analyzeAPIResponse(response, duration) {
        // Performance analysis
        if (duration > 5000) {
            console.warn('Slow API response detected:', {
                url: response.url,
                duration: `${duration}ms`,
                threshold: '5000ms'
            });
        }

        // Response size analysis
        if (response.encodedDataLength > 5 * 1024 * 1024) { // 5MB
            console.warn('Large response size detected:', {
                url: response.url,
                size: `${(response.encodedDataLength / 1024 / 1024).toFixed(2)}MB`,
                threshold: '5MB'
            });
        }

        // Error analysis
        if (response.status >= 400) {
            console.error('API error response:', {
                url: response.url,
                status: response.status,
                statusText: response.statusText
            });
        }
    }

    handleMemoryUsage(params) {
        const usage = params.usage;

        console.log('Memory Usage:', {
            used: `${(usage.usedJSHeapSize / 1024 / 1024).toFixed(2)}MB`,
            total: `${(usage.totalJSHeapSize / 1024 / 1024).toFixed(2)}MB`,
            limit: `${(usage.jsHeapSizeLimit / 1024 / 1024).toFixed(2)}MB`
        });

        // Memory usage warnings
        const usagePercentage = (usage.usedJSHeapSize / usage.jsHeapSizeLimit) * 100;
        if (usagePercentage > 80) {
            console.warn('High memory usage detected:', {
                percentage: `${usagePercentage.toFixed(2)}%`,
                used: `${(usage.usedJSHeapSize / 1024 / 1024).toFixed(2)}MB`,
                limit: `${(usage.jsHeapSizeLimit / 1024 / 1024).toFixed(2)}MB`
            });
        }
    }

    handleConsoleMessage(message) {
        // Log console messages for debugging
        if (message.source === 'console-api') {
            console.log('Console:', {
                level: message.level,
                text: message.text,
                timestamp: message.timestamp
            });
        }
    }

    handleRuntimeException(exceptionDetails) {
        console.error('Runtime Exception:', {
            message: exceptionDetails.text,
            stack: exceptionDetails.stackTrace,
            timestamp: Date.now()
        });
    }

    // Performance profiling
    async startProfiling() {
        await this.sendCommand('Profiler.start');
        console.log('Profiling started');
    }

    async stopProfiling() {
        const result = await this.sendCommand('Profiler.stop');
        console.log('Profiling completed');
        return result;
    }

    // Memory profiling
    async startMemoryProfiling() {
        await this.sendCommand('HeapProfiler.startSampling');
        console.log('Memory profiling started');
    }

    async stopMemoryProfiling() {
        const result = await this.sendCommand('HeapProfiler.stopSampling');
        console.log('Memory profiling completed');
        return result;
    }

    // Screenshot capture
    async captureScreenshot() {
        const result = await this.sendCommand('Page.captureScreenshot', {
            format: 'png',
            quality: 80
        });

        console.log('Screenshot captured');
        return result.data;
    }

    // Network conditions simulation
    async setNetworkConditions(offline = false, latency = 0, downloadThroughput = 0, uploadThroughput = 0) {
        await this.sendCommand('Network.emulateNetworkConditions', {
            offline: offline,
            latency: latency,
            downloadThroughput: downloadThroughput,
            uploadThroughput: uploadThroughput
        });

        console.log('Network conditions set:', {
            offline,
            latency,
            downloadThroughput,
            uploadThroughput
        });
    }

    // CPU throttling
    async setCPUThrottling(rate) {
        await this.sendCommand('Emulation.setCPUThrottlingRate', {
            rate: rate
        });

        console.log('CPU throttling set:', { rate });
    }
}

// Usage example
const devTools = new QwenDevToolsIntegration();

// Connect to Chrome DevTools Protocol
devTools.connect().then(() => {
    console.log('DevTools integration ready');
}).catch(error => {
    console.error('Failed to connect to DevTools:', error);
});

// Performance monitoring during image processing
async function monitoredImageProcessing(imageId, prompt) {
    // Start profiling
    await devTools.startProfiling();
    await devTools.startMemoryProfiling();

    // Set network conditions for testing
    await devTools.setNetworkConditions(false, 100, 1024 * 1024, 512 * 1024);

    try {
        const result = await processImageWithAnalytics(imageId, prompt);
        return result;
    } finally {
        // Stop profiling
        const profile = await devTools.stopProfiling();
        const memoryProfile = await devTools.stopMemoryProfiling();

        // Capture screenshot for debugging
        const screenshot = await devTools.captureScreenshot();

        console.log('Performance profiles collected:', {
            profile: profile,
            memoryProfile: memoryProfile,
            screenshot: screenshot
        });
    }
}

Error Tracking and Debugging

Implement comprehensive error tracking:

// Advanced error tracking system
class QwenErrorTracker {
    constructor() {
        this.errors = [];
        this.errorPatterns = new Map();
        this.performanceMetrics = new Map();
        this.debugContexts = new Map();
    }

    // Track errors with detailed context
    trackError(error, context = {}) {
        const errorId = this.generateErrorId();
        const errorData = {
            id: errorId,
            timestamp: Date.now(),
            error: {
                name: error.name,
                message: error.message,
                stack: error.stack,
                code: error.code
            },
            context: {
                ...context,
                url: window.location.href,
                userAgent: navigator.userAgent,
                memory: this.getMemoryInfo(),
                network: this.getNetworkInfo()
            },
            severity: this.calculateErrorSeverity(error),
            category: this.categorizeError(error),
            resolved: false
        };

        this.errors.push(errorData);
        this.analyzeErrorPattern(errorData);

        // Send to monitoring service
        this.sendToMonitoringService(errorData);

        return errorId;
    }

    // Generate unique error ID
    generateErrorId() {
        return `error_${Date.now()}_${Math.random().toString(36).substr(2, 9)}`;
    }

    // Calculate error severity
    calculateErrorSeverity(error) {
        const fatalErrors = ['OutOfMemoryError', 'StackOverflowError', 'NetworkError'];
        const criticalErrors = ['TimeoutError', 'AuthenticationError', 'PermissionError'];

        if (fatalErrors.includes(error.name)) {
            return 'fatal';
        } else if (criticalErrors.includes(error.name)) {
            return 'critical';
        } else if (error.name === 'TypeError' || error.name === 'ReferenceError') {
            return 'high';
        } else {
            return 'medium';
        }
    }

    // Categorize errors
    categorizeError(error) {
        const message = error.message.toLowerCase();

        if (message.includes('network') || message.includes('fetch')) {
            return 'network';
        } else if (message.includes('memory') || message.includes('heap')) {
            return 'memory';
        } else if (message.includes('timeout')) {
            return 'timeout';
        } else if (message.includes('permission') || message.includes('auth')) {
            return 'authorization';
        } else if (message.includes('api') || message.includes('endpoint')) {
            return 'api';
        } else {
            return 'unknown';
        }
    }

    // Analyze error patterns
    analyzeErrorPattern(errorData) {
        const key = `${errorData.category}_${errorData.error.name}`;

        if (!this.errorPatterns.has(key)) {
            this.errorPatterns.set(key, {
                count: 0,
                firstSeen: errorData.timestamp,
                lastSeen: errorData.timestamp,
                severity: errorData.severity,
                affectedContexts: new Set()
            });
        }

        const pattern = this.errorPatterns.get(key);
        pattern.count++;
        pattern.lastSeen = errorData.timestamp;
        pattern.affectedContexts.add(JSON.stringify(errorData.context));
    }

    // Get memory information
    getMemoryInfo() {
        if (performance.memory) {
            return {
                used: performance.memory.usedJSHeapSize,
                total: performance.memory.totalJSHeapSize,
                limit: performance.memory.jsHeapSizeLimit
            };
        }
        return null;
    }

    // Get network information
    getNetworkInfo() {
        if (navigator.connection) {
            return {
                effectiveType: navigator.connection.effectiveType,
                downlink: navigator.connection.downlink,
                rtt: navigator.connection.rtt,
                saveData: navigator.connection.saveData
            };
        }
        return null;
    }

    // Send error to monitoring service
    async sendToMonitoringService(errorData) {
        try {
            await fetch('/api/error-tracking', {
                method: 'POST',
                headers: {
                    'Content-Type': 'application/json',
                },
                body: JSON.stringify(errorData)
            });
        } catch (error) {
            console.error('Failed to send error to monitoring service:', error);
        }
    }

    // Create debug context
    createDebugContext(contextId, data) {
        this.debugContexts.set(contextId, {
            id: contextId,
            timestamp: Date.now(),
            data: data,
            events: []
        });
    }

    // Add event to debug context
    addDebugEvent(contextId, event) {
        const context = this.debugContexts.get(contextId);
        if (context) {
            context.events.push({
                timestamp: Date.now(),
                event: event
            });
        }
    }

    // Get error statistics
    getErrorStatistics() {
        const stats = {
            totalErrors: this.errors.length,
            errorsByCategory: {},
            errorsBySeverity: {},
            errorPatterns: {},
            recentErrors: this.errors.slice(-10),
            topErrorPatterns: []
        };

        // Categorize errors
        this.errors.forEach(error => {
            const category = error.category;
            const severity = error.severity;

            stats.errorsByCategory[category] = (stats.errorsByCategory[category] || 0) + 1;
            stats.errorsBySeverity[severity] = (stats.errorsBySeverity[severity] || 0) + 1;
        });

        // Analyze patterns
        this.errorPatterns.forEach((pattern, key) => {
            stats.errorPatterns[key] = {
                count: pattern.count,
                firstSeen: new Date(pattern.firstSeen).toISOString(),
                lastSeen: new Date(pattern.lastSeen).toISOString(),
                severity: pattern.severity,
                uniqueContexts: pattern.affectedContexts.size
            };
        });

        // Get top patterns
        const sortedPatterns = Object.entries(stats.errorPatterns)
            .sort(([,a], [,b]) => b.count - a.count)
            .slice(0, 5);

        stats.topErrorPatterns = sortedPatterns.map(([key, data]) => ({
            pattern: key,
            ...data
        }));

        return stats;
    }

    // Generate error report
    generateErrorReport(timeRange = { start: null, end: null }) {
        let filteredErrors = this.errors;

        if (timeRange.start && timeRange.end) {
            filteredErrors = this.errors.filter(error =>
                error.timestamp >= timeRange.start && error.timestamp <= timeRange.end
            );
        }

        const report = {
            generatedAt: new Date().toISOString(),
            timeRange: timeRange,
            summary: this.getErrorSummary(filteredErrors),
            errors: filteredErrors,
            statistics: this.getErrorStatistics(),
            recommendations: this.generateErrorRecommendations(filteredErrors)
        };

        return report;
    }

    getErrorSummary(errors) {
        return {
            totalErrors: errors.length,
            uniqueErrors: new Set(errors.map(e => e.error.name)).size,
            averageTimeBetweenErrors: this.calculateAverageTimeBetweenErrors(errors),
            mostCommonError: this.getMostCommonError(errors),
            severityDistribution: this.getSeverityDistribution(errors)
        };
    }

    calculateAverageTimeBetweenErrors(errors) {
        if (errors.length < 2) return 0;

        const sortedErrors = errors.sort((a, b) => a.timestamp - b.timestamp);
        const timeDifferences = [];

        for (let i = 1; i < sortedErrors.length; i++) {
            timeDifferences.push(sortedErrors[i].timestamp - sortedErrors[i-1].timestamp);
        }

        return timeDifferences.reduce((sum, diff) => sum + diff, 0) / timeDifferences.length;
    }

    getMostCommonError(errors) {
        const errorCounts = {};

        errors.forEach(error => {
            const key = `${error.error.name}: ${error.error.message}`;
            errorCounts[key] = (errorCounts[key] || 0) + 1;
        });

        const mostCommon = Object.entries(errorCounts)
            .sort(([,a], [,b]) => b - a)[0];

        return mostCommon ? {
            error: mostCommon[0],
            count: mostCommon[1]
        } : null;
    }

    getSeverityDistribution(errors) {
        const distribution = { fatal: 0, critical: 0, high: 0, medium: 0, low: 0 };

        errors.forEach(error => {
            distribution[error.severity] = (distribution[error.severity] || 0) + 1;
        });

        return distribution;
    }

    generateErrorRecommendations(errors) {
        const recommendations = [];
        const stats = this.getErrorSummary(errors);

        // High error rate recommendations
        if (stats.totalErrors > 50) {
            recommendations.push({
                type: 'alert',
                message: `High error rate detected: ${stats.totalErrors} errors in the specified time range`,
                action: 'Review error patterns and implement fixes for most common errors'
            });
        }

        // Memory error recommendations
        const memoryErrors = errors.filter(e => e.category === 'memory');
        if (memoryErrors.length > 10) {
            recommendations.push({
                type: 'warning',
                message: `Multiple memory errors detected: ${memoryErrors.length} memory-related errors`,
                action: 'Implement memory optimization and garbage collection strategies'
            });
        }

        // Network error recommendations
        const networkErrors = errors.filter(e => e.category === 'network');
        if (networkErrors.length > 5) {
            recommendations.push({
                type: 'warning',
                message: `Network connectivity issues: ${networkErrors.length} network errors`,
                action: 'Implement retry logic and network resilience patterns'
            });
        }

        // API error recommendations
        const apiErrors = errors.filter(e => e.category === 'api');
        if (apiErrors.length > 15) {
            recommendations.push({
                type: 'warning',
                message: `API integration issues: ${apiErrors.length} API-related errors`,
                action: 'Review API integration and implement proper error handling'
            });
        }

        return recommendations;
    }
}

// Usage example
const errorTracker = new QwenErrorTracker();

// Global error handler
window.addEventListener('error', (event) => {
    errorTracker.trackError(event.error, {
        source: event.filename,
        line: event.lineno,
        column: event.colno,
        type: 'unhandled_error'
    });
});

// Unhandled promise rejection handler
window.addEventListener('unhandledrejection', (event) => {
    errorTracker.trackError(event.reason, {
        type: 'unhandled_promise_rejection',
        promise: event.promise
    });
});

// Create debug context for image processing
function createImageProcessingDebugContext(imageId, prompt) {
    const contextId = `image_processing_${imageId}`;
    errorTracker.createDebugContext(contextId, {
        imageId: imageId,
        prompt: prompt,
        startTime: Date.now()
    });
    return contextId;
}

// Error handling wrapper for API calls
async function safeAPICall(url, options, contextId) {
    try {
        const response = await fetch(url, options);

        if (!response.ok) {
            throw new Error(`HTTP error! status: ${response.status}`);
        }

        return await response.json();
    } catch (error) {
        errorTracker.trackError(error, {
            url: url,
            method: options.method,
            contextId: contextId,
            type: 'api_call'
        });

        throw error;
    }
}

// Usage in image processing
async function processImageWithErrorTracking(imageId, prompt) {
    const contextId = createImageProcessingDebugContext(imageId, prompt);

    try {
        errorTracker.addDebugEvent(contextId, {
            type: 'start_processing',
            timestamp: Date.now()
        });

        const result = await safeAPICall('/api/edit-image', {
            method: 'POST',
            headers: { 'Content-Type': 'application/json' },
            body: JSON.stringify({ image_id: imageId, prompt: prompt })
        }, contextId);

        errorTracker.addDebugEvent(contextId, {
            type: 'processing_complete',
            timestamp: Date.now(),
            result: 'success'
        });

        return result;
    } catch (error) {
        errorTracker.addDebugEvent(contextId, {
            type: 'processing_failed',
            timestamp: Date.now(),
            error: error.message
        });

        throw error;
    }
}

Practical Implementation Guide

Apply these optimization techniques to your Qwen AI Image Editor projects.

Integration Example: Complete Performance Monitoring

// Complete performance monitoring implementation
class QwenPerformanceMonitoringSuite {
    constructor(config = {}) {
        this.config = {
            apiKey: config.apiKey || '',
            monitoringEndpoint: config.monitoringEndpoint || '/api/monitoring',
            errorTrackingEndpoint: config.errorTrackingEndpoint || '/api/errors',
            enableConsoleLogging: config.enableConsoleLogging || true,
            enableNetworkMonitoring: config.enableNetworkMonitoring || true,
            enableMemoryMonitoring: config.enableMemoryMonitoring || true,
            ...config
        };

        this.performanceMonitor = new QwenPerformanceMonitor();
        this.analytics = new QwenPerformanceAnalytics();
        this.errorTracker = new QwenErrorTracker();
        this.devTools = new QwenDevToolsIntegration();

        this.initializeMonitoring();
    }

    async initializeMonitoring() {
        // Initialize DevTools integration
        if (this.config.enableDevTools) {
            try {
                await this.devTools.connect();
                console.log('DevTools integration initialized');
            } catch (error) {
                console.warn('DevTools integration failed:', error);
            }
        }

        // Initialize performance monitoring
        this.setupPerformanceMonitoring();

        // Initialize error tracking
        this.setupErrorTracking();

        // Initialize network monitoring
        if (this.config.enableNetworkMonitoring) {
            this.setupNetworkMonitoring();
        }

        // Initialize memory monitoring
        if (this.config.enableMemoryMonitoring) {
            this.setupMemoryMonitoring();
        }
    }

    setupPerformanceMonitoring() {
        // Performance Observer for API calls
        if (window.PerformanceObserver) {
            const observer = new PerformanceObserver((list) => {
                list.getEntries().forEach((entry) => {
                    if (entry.initiatorType === 'fetch' || entry.initiatorType === 'xmlhttprequest') {
                        this.performanceMonitor.trackAPICall(entry.name, {
                            method: 'GET',
                            duration: entry.duration
                        });
                    }
                });
            });

            observer.observe({ entryTypes: ['resource'] });
        }
    }

    setupErrorTracking() {
        // Global error handlers
        window.addEventListener('error', (event) => {
            this.errorTracker.trackError(event.error, {
                source: event.filename,
                line: event.lineno,
                column: event.colno,
                type: 'unhandled_error'
            });
        });

        window.addEventListener('unhandledrejection', (event) => {
            this.errorTracker.trackError(event.reason, {
                type: 'unhandled_promise_rejection',
                promise: event.promise
            });
        });
    }

    setupNetworkMonitoring() {
        // Intercept fetch requests
        const originalFetch = window.fetch;
        window.fetch = async (...args) => {
            const startTime = performance.now();

            try {
                const response = await originalFetch(...args);
                const duration = performance.now() - startTime;

                // Log successful request
                this.performanceMonitor.trackAPICall(args[0], {
                    method: args[1]?.method || 'GET',
                    duration: duration,
                    success: response.ok
                });

                return response;
            } catch (error) {
                const duration = performance.now() - startTime;

                // Log failed request
                this.performanceMonitor.trackAPICall(args[0], {
                    method: args[1]?.method || 'GET',
                    duration: duration,
                    success: false,
                    error: error.message
                });

                this.errorTracker.trackError(error, {
                    url: args[0],
                    method: args[1]?.method || 'GET',
                    type: 'network_error'
                });

                throw error;
            }
        };
    }

    setupMemoryMonitoring() {
        // Monitor memory usage
        setInterval(() => {
            if (performance.memory) {
                const memoryUsage = {
                    used: performance.memory.usedJSHeapSize,
                    total: performance.memory.totalJSHeapSize,
                    limit: performance.memory.jsHeapSizeLimit,
                    timestamp: Date.now()
                };

                // Check for memory leaks
                this.checkMemoryUsage(memoryUsage);

                // Store for analytics
                this.performanceMonitor.metrics.memoryUsage.push(memoryUsage);
            }
        }, 5000);
    }

    checkMemoryUsage(memoryUsage) {
        const usagePercentage = (memoryUsage.used / memoryUsage.limit) * 100;

        if (usagePercentage > 80) {
            console.warn('High memory usage detected:', {
                percentage: `${usagePercentage.toFixed(2)}%`,
                used: `${(memoryUsage.used / 1024 / 1024).toFixed(2)}MB`,
                limit: `${(memoryUsage.limit / 1024 / 1024).toFixed(2)}MB`
            });

            // Trigger garbage collection if available
            if (window.gc) {
                window.gc();
            }
        }
    }

    // Start monitoring session
    startMonitoringSession(sessionConfig = {}) {
        const sessionId = this.analytics.startSession({
            ...sessionConfig,
            suiteConfig: this.config
        });

        console.log(`Started monitoring session: ${sessionId}`);
        return sessionId;
    }

    // End monitoring session and generate report
    endMonitoringSession(sessionId) {
        const report = this.analytics.endSession(sessionId);

        if (report) {
            console.log('Monitoring session completed:', report);

            // Send report to monitoring service
            this.sendMonitoringReport(report);

            return report;
        }

        return null;
    }

    // Send monitoring report to backend
    async sendMonitoringReport(report) {
        try {
            await fetch(this.config.monitoringEndpoint, {
                method: 'POST',
                headers: {
                    'Content-Type': 'application/json',
                    'Authorization': `Bearer ${this.config.apiKey}`
                },
                body: JSON.stringify(report)
            });

            console.log('Monitoring report sent successfully');
        } catch (error) {
            console.error('Failed to send monitoring report:', error);
            this.errorTracker.trackError(error, {
                type: 'monitoring_report_failed',
                sessionId: report.sessionId
            });
        }
    }

    // Performance monitoring for image processing
    async monitorImageProcessing(imageId, prompt, processingFunction) {
        const sessionId = this.startMonitoringSession({
            imageId: imageId,
            prompt: prompt,
            operation: 'image_processing'
        });

        try {
            // Start profiling
            if (this.devTools.client) {
                await this.devTools.startProfiling();
                await this.devTools.startMemoryProfiling();
            }

            // Track processing start
            this.analytics.addPerformanceMark(sessionId, 'processing_start');

            // Execute processing function
            const result = await processingFunction(imageId, prompt);

            // Track processing end
            this.analytics.addPerformanceMark(sessionId, 'processing_end');

            // Track successful processing
            this.performanceMonitor.trackAPICall('/api/edit-image', {
                image_id: imageId,
                prompt: prompt,
                duration: performance.now() - performance.getEntriesByName(`${sessionId}_processing_start`)[0].startTime,
                success: true
            });

            return result;
        } catch (error) {
            // Track failed processing
            this.performanceMonitor.trackAPICall('/api/edit-image', {
                image_id: imageId,
                prompt: prompt,
                duration: performance.now() - performance.getEntriesByName(`${sessionId}_processing_start`)[0].startTime,
                success: false,
                error: error.message
            });

            this.errorTracker.trackError(error, {
                imageId: imageId,
                prompt: prompt,
                sessionId: sessionId,
                type: 'image_processing_error'
            });

            throw error;
        } finally {
            // Stop profiling
            if (this.devTools.client) {
                const profile = await this.devTools.stopProfiling();
                const memoryProfile = await this.devTools.stopMemoryProfiling();

                // Store profiling data
                this.analytics.trackMemorySnapshot(sessionId);
            }

            // End monitoring session
            this.endMonitoringSession(sessionId);
        }
    }

    // Get current performance metrics
    getCurrentMetrics() {
        return {
            performance: this.performanceMonitor.generatePerformanceReport(),
            errors: this.errorTracker.getErrorStatistics(),
            analytics: this.analytics.sessionData
        };
    }

    // Generate comprehensive performance report
    generateComprehensiveReport() {
        const currentMetrics = this.getCurrentMetrics();

        return {
            generatedAt: new Date().toISOString(),
            config: this.config,
            metrics: currentMetrics,
            recommendations: this.generatePerformanceRecommendations(currentMetrics)
        };
    }

    generatePerformanceRecommendations(metrics) {
        const recommendations = [];

        // Performance recommendations
        if (metrics.performance.averageApiLatency > 1000) {
            recommendations.push({
                type: 'performance',
                priority: 'high',
                message: 'High API latency detected',
                action: 'Consider implementing caching and batch processing'
            });
        }

        // Error rate recommendations
        if (metrics.errors.totalErrors > 10) {
            recommendations.push({
                type: 'reliability',
                priority: 'high',
                message: 'High error rate detected',
                action: 'Review error patterns and implement proper error handling'
            });
        }

        // Memory usage recommendations
        if (metrics.performance.memoryUsage && metrics.performance.memoryUsage.used > 500) {
            recommendations.push({
                type: 'memory',
                priority: 'medium',
                message: 'High memory usage detected',
                action: 'Implement memory optimization and garbage collection'
            });
        }

        return recommendations;
    }
}

// Usage example
const monitoringSuite = new QwenPerformanceMonitoringSuite({
    apiKey: 'your_qwen_api_key',
    enableDevTools: true,
    enableConsoleLogging: true,
    enableNetworkMonitoring: true,
    enableMemoryMonitoring: true
});

// Image processing with comprehensive monitoring
async function processImageWithFullMonitoring(imageId, prompt) {
    return await monitoringSuite.monitorImageProcessing(
        imageId,
        prompt,
        async (id, promptText) => {
            // This is your actual image processing function
            const response = await fetch('/api/edit-image', {
                method: 'POST',
                headers: {
                    'Content-Type': 'application/json',
                    'Authorization': `Bearer ${monitoringSuite.config.apiKey}`
                },
                body: JSON.stringify({
                    image_id: id,
                    prompt: promptText,
                    num_inference_steps: 50,
                    guidance_scale: 7.5
                })
            });

            if (!response.ok) {
                throw new Error(`HTTP error! status: ${response.status}`);
            }

            return await response.json();
        }
    );
}

// Generate performance report on demand
function generatePerformanceReport() {
    const report = monitoringSuite.generateComprehensiveReport();
    console.log('Performance Report:', report);
    return report;
}

Additional Learning Resources

Documentation and Tools

Community and Support

Code Examples and Templates


Conclusion: Building Performance-Optimized AI Image Editing Applications

This comprehensive guide has provided you with the knowledge and tools to optimize Qwen AI Image Editor implementations for maximum performance and reliability. From Chrome DevTools integration to advanced monitoring and error tracking, you now have a complete toolkit for building production-ready applications.

Key Takeaways

  1. Performance Monitoring is Essential: Implement comprehensive monitoring from the start of your project
  2. Chrome DevTools Integration: Leverage the full power of Chrome DevTools Protocol for advanced debugging
  3. Memory Optimization: Monitor and optimize memory usage for large image processing workflows
  4. Error Tracking: Implement sophisticated error tracking to identify and resolve issues quickly
  5. Continuous Improvement: Use analytics and reporting to continuously optimize your applications

Implementation Roadmap

Phase 1: Foundation (Week 1-2)

Phase 2: Advanced Features (Week 3-4)

Phase 3: Optimization (Week 5-6)

Phase 4: Production Readiness (Week 7-8)

Next Steps

  1. Start Small: Begin with basic performance monitoring and gradually add features
  2. Measure Everything: Collect comprehensive metrics to identify optimization opportunities
  3. Iterate and Improve: Use data-driven insights to continuously optimize your applications
  4. Stay Current: Keep up with the latest performance optimization techniques and tools

By following the strategies and techniques outlined in this guide, you’ll be well-equipped to build high-performance, reliable applications that leverage the full power of Qwen AI Image Editor while providing exceptional user experiences.


This comprehensive guide completes our five-part series on Qwen AI Image Editor. You now have everything needed to implement professional-grade AI image editing applications with optimized performance, robust error handling, and comprehensive monitoring capabilities.

Last updated: October 2025


Edit page
Share this post on:

Next Post
Enterprise AI Image Editor Deployment Maximizing ROI and Team Productivity